Re: FOL and Infinity
 From: sudhir <sudhir_sh@xxxxxxxxxxx>
 Date: Tue, 12 Apr 2011 12:27:14 0700 (PDT)
On Apr 12, 11:24 pm, MoeBlee <jazzm...@xxxxxxxxxxx> wrote:
On Apr 12, 1:10 pm, sudhir <sudhir...@xxxxxxxxxxx> wrote:I know you do not have a definition for AxPhi(x). All you have is a
On Apr 12, 12:39 am, MoeBlee <jazzm...@xxxxxxxxxxx> wrote:> On Apr 11, 1:27 pm, sudhir <sudhir...@xxxxxxxxxxx> wrote:
.
How does the sentence AxPhi(x) imply Phi(1) ,
unless some intuitive semantic content
is read into AxPhi(x)?
No matter what the interpretation of the language, AxPhi(x) implies
Phi(c) for any constant 'c' in the language. That is, for any constant
'c' in the language, there is no model in which AxPhi(x) is true but
Phi(c) is false.
This is precisely what I said.
No, it's not.
Your definition of AxPhi(x) is "For any
constant c
in the language, AxPhi(x) implies Phi(c)'.
No, I didn't give a "definition" of a formula AxPhi(x). Indeed, I said
that I don't know what you mean by a "definition" of such a formula.
You skipped what I wrote.
intuition
captured in your rule UI'For all constants c, AxPhi(x) implies
Phi(c).'
..
Phi(i) is not even a formula of sentential logic.I thought the meaning was clear if Phi(1), Phi(2) and so on are
sentence symbols, then no
wff of sentential logic could imply each of them.
..Of course you are not formally introducing the notion of a limit.YouPrecisely such a sentence is introduced in FOL , namely AxPhi(x) ..In
a way, AxPhi(x) is
a limit to the sequence
Phi(1), Phi(1)&Phi(2), Phi(1)&Phi(2)&Phi(3), and so on.
You like to use words like "limit" in your own personal way, it seems.
The big assumption is that such a limit exists;
No, there's no notion of such a limit when we formulate a language so
that "AxPhi(x)" is a formula of the language.
are informally
looking for a sentence from which you can infer each of the sentences
Phi(1),Phi(2) and so on.
In sentential logic, you do not find such a sentence. So you introduce
the sentence AxPhi(x)
(you could use any other symbol ) and claim that from it you can infer
each of Phi(1) ,Phi(2) and so on.
It is nothing but a finite shorthand for an infinite amount of
information.
.
 FollowUps:
 Re: FOL and Infinity
 From: MoeBlee
 Re: FOL and Infinity
 References:
 FOL and Infinity
 From: sudhir
 Re: FOL and Infinity
 From: MoeBlee
 Re: FOL and Infinity
 From: sudhir
 Re: FOL and Infinity
 From: MoeBlee
 Re: FOL and Infinity
 From: sudhir
 Re: FOL and Infinity
 From: MoeBlee
 FOL and Infinity
 Prev by Date: Re: The Impossibility of Proving the Truth Set Productive
 Next by Date: Re: FOL and Infinity
 Previous by thread: Re: FOL and Infinity
 Next by thread: Re: FOL and Infinity
 Index(es):
Relevant Pages
