Re: cone inside sphere problem  find the dimensions of the cone of max volume
 From: rob@xxxxxxxxxxxxxx (Rob Johnson)
 Date: Wed, 30 Nov 2005 07:31:44 GMT
In article <26801510.1133296839363.JavaMail.jakarta@xxxxxxxxxxxxxxxxxxxxxx>,
jdavca <msfca@xxxxxxxx> wrote:
>Problem:
>The vertex of a right circular cone and the circular edge of its base
>lie on the surface of a sphere. The sphere has a radius of 5 feet.
>Find the dimensions of the cone of maximum volume that can be fitted
>into the sphere.
>
>I'm really not sure what to do with this one!
>
>I appreciate anyone who can help me with this...
Let h be the height of the cone and r be the radius of the base of the
cone. Note that the distance from the center of the sphere to the base
of the cone is h5. From the point on the base of the cone closest
to the center to the edge of cone is r. Use Pythagoras to find the
distance from the center of the sphere to the edge of the cone. Note
that this distance is also 5. This should give you a relation between
r and h.
To maximize volume, you want to maximize hr^2.
Rob Johnson <rob@xxxxxxxxxxxxxx>
take out the trash before replying
.
 References:
 Prev by Date: Re: Negative Mathematics
 Next by Date: How to use definition to prove that f(x)=sqrt(x) is uniform continuous on the interval [0, +inf)
 Previous by thread: Re: cone inside sphere problem  find the dimensions of the cone of max volume
 Next by thread: Approxiamtion of of order Statistics
 Index(es):
Relevant Pages
