# Re: Infinity......

*From*: "William Hughes" <wpihughes@xxxxxxxxxxx>*Date*: 2 Dec 2006 18:50:40 -0800

zuhair wrote:

Stephen Montgomery-Smith wrote:

zuhair wrote:

It only shows that subtraction depends of the properness of subsethood,

while addition do not?

I think there is a mistake in infinite cardinal arthmetic,

one day will be revealed.

You are not being quite fair here. You are OK with the notion of odd or

even being undefined for aleph-null (this was your response to Doug).

So what is then wrong with the notion of substraction being ill-defined

for infinite cardinals?

Stephen

there is certainly week point about cantor's cardinality, I have not

doubt in this at all. First : it is too counter-intuitive to have any

usefullness other than academic luxury. As I say always Cantor's

cardinality is too counter-intuitive to be true.

The concept of infinity itself is questionable? even its definition by

dedekind is not so strong one ( an infinite set is a set injectable to

some proper subset of it ) this is not a good definition, it is biased

from the start.

In what way is this "biased". The charaterization "there is no

bijection

to a proper subset" is a simple characterization of a finite set.

It will not help to try to find another characterization. Either it

will

be equivalent to this, or it will not define what we intuitively

consider

to be a finite set. The Dedekind definition of infinite follows from

"an infinite set is one that is not finite". Note it does not

depend on ordering.

By AC, every set is well ordered. So it is easier to define " infinite

set" as: any set is said to be infinite iff when its members are

arranged in a well ordered manner, the successor of every member of it

is in it.

while a finite set is any set if its members are arranged in a well

ordered manner then there exists a member of it that do not have a

sucessor in it and that member is called the last member .

No, well orderings are not unique. Even if we assume that a set

can be well ordered (as you point out we need AC for this to hold

for every set) a set (e.g. the natural numbers) can have two

well orderings, one with a last element, and one without a last

element.

These are easier approaches to define a finite and an infinite set.

You need to characterize a finite set. You then

negate this characterization to get a characterization of infinite set.

The only way to

get a simpler definition is to find a simpler characterization of

finite set than "a set which does not admit a bijection to a proper

subset".

Good luck.

Then we go and define bijection, injection and serjection. and from

these definitions and the above definition of a finite set and an

infinite set , we might derive Dedekind definition as a theorum.

anyhow, even then I am not quite satisfied with that Dedekindian

definition of an infinite set. It leads to all counter-intuitiveness

that makes cantor's cardinality something hard to beleive that it is

true.

Learn to live with it. If you accept that changing the name of every

element of a set does not change its size, then you have to

accept that if there is a bijection from A to B, then

A and B have the same size.

- William Hughes

.

**Follow-Ups**:**Re: Infinity......***From:*Robert Maas, see http://tinyurl.com/uh3t

**Re: Infinity......***From:*zuhair

**References**:**Infinity......***From:*zuhair

**Re: Infinity......***From:*Gauster

**Re: Infinity......***From:*zuhair

**Re: Infinity......***From:*William Hughes

**Re: Infinity......***From:*zuhair

**Re: Infinity......***From:*Stephen Montgomery-Smith

**Re: Infinity......***From:*zuhair

- Prev by Date:
**Re: Axiom of Infinity.** - Next by Date:
**hodge decomposition harmonic vector field** - Previous by thread:
**Re: Infinity......** - Next by thread:
**Re: Infinity......** - Index(es):