pretty result from my von Koch expertiments

From: Roger L. Bagula (
Date: 07/23/04

Date: Fri, 23 Jul 2004 08:26:48 GMT

It uses a partial Gauss map to curve the fractal around.
True basic:
SET MODE "color"
SET WINDOW 0,1920,0,1024
LET x=.2
LET y=.3
LET a=0
LET b =0
LET s1=1000
LET s2 =s1*1024/1920
LET z=rnd
PRINT" Circle Cantor set I.F.S. three parts self similar "
PRINT" in a Besicovitch -Ursell von Koch function"
PRINT" BY R.L.BAGULA 23 July 2004 "
PRINT" The result is von Koch gaussian map"
FOR n= 1 TO 1000000
     LET a =RND
     REM Cantor angular set
     IF a <= 1/3 THEN
        LET z1=z/3
        SET COLOR "blue"
     END IF
     IF a<= 2/3 AND a>1/3 THEN
        LET z1=z/3+1/3
        SET COLOR "black"
     END IF
     IF a<= 1 AND a>2/3 THEN
        LET z1=z/3+2/3
        SET COLOR "red"
     END IF
     LET z=z1
     REM a Besicovitch -Ursell Cantor function used instead of sine and
     IF rnd>0.5 then
        LET x1=x/3+bis4(z)
        LET y1=y/3+bis4(z+1/2)
        LET x1=x/3-bis4(z+1/2)
        LET y1=y/3+bis4(z)
        REM mirror transform
     END IF
     LET x=x1
     LET y=y1
     REM Gaussian map conformal projection
     LET r=sqr(x^2+y^2)
     IF n>10 THEN PLOT 1920/2+s1*x/(1+r^2),1024/2+s2*(1-r^2)/(1+r^2)-100
DEF bis4(x)
     REM Mandelbrot Multifractal cartoon function of FOUR lines defined
     REM 0<x1<x2< x3<X4=1
     REM unit square domain
     REM lines continious
     REM page 33 of "Multifractal and 1/f Noise"
     LET x0=0
     LET x1=1/3
     LET x2=1/2
     LET x3=2/3
     LET x4=1
     LET x= mod(x,1)
     IF x >= X0 and x <= x1 then LET y=0
     IF x > x1 and x <= x2 then LET y=3*sqr(3)*X-sqr(3)
     IF x > x2 and x <= x3 then LET y=-3*sqr(3)*X+2*Sqr(3)
     IF x > x3 and x <= x4 then LET y=0
     LET BIS4 =y


Respectfully, Roger L. Bagula, 11759Waterhill Road, Lakeside,Ca 92040-2905,tel:
619-5610814 :


Relevant Pages

  • pretty result from my von Koch expertiments
    ... It uses a partial Gauss map to curve the fractal around. ... SET BACKGROUND COLOR "white" ... DECLARE DEF bis4 ... REM Gaussian map conformal projection ...
  • [QUIZ][SOLUTION] Re: Sokoban (#5)
    ... I know that the Sokoban quiz was posted a long time ago. ... # GAME is the name given to a saved game. ... # Given a level's map, return the position of the token representing ... def Sokoban.find ...
  • Re: Projecting MUD maps
    ... I'm looking for an algorithm to project "MUD maps" such as the ... The mainfunction demonstrates how a map consisting of nine rooms ... def connect: ...
  • Re: A* (#98)
    ... It produces this path on the large map: ... In response to Martin about the quiz being "spoiled" - I don't come ... def initialize ... raise "Either position or goal tile are not set" ...
  • Re: Checking for tokens with MessageTrans
    ... REM Open specified msg file, return descriptor block ptr ... DEF FNopen_msg ... REM Look for a token in the messages file ...