a bettter Siegel disk program in Mathematica
From: Roger Bagula (tftn_at_earthlink.net)
Date: 11/23/04
 Next message: Roger Bagula: "tetrahedral Siegel Disk Julia map"
 Previous message: Roger Bagula: "Approximate entropy applied to the Pi digits"
 Messages sorted by: [ date ] [ thread ]
Date: Tue, 23 Nov 2004 22:35:18 GMT
I tried to make it work better.
You really have to watch getting the starting point too large!
Clear[x,y,a,b,s,g,a0,t]
(*Siegel Disk Julia map*)
gm=N[(1+Sqrt[5])/2];
a=Cos[2*Pi*gm];
b=Sin[2*Pi*gm];
digits=400;
x[n_,t_]:=x[n,t]=(x[n1,t]*ay[n1,t]*b+x[n1,t]^2y[n1,t]^2)
y[n_,t_]:=y[n,t]=(x[n1,t]*b+y[n1,t]*a+2*x[n1,t]*y[n1,t])
x[0,t_]:=0.50/(1+t/2);y[0,t_]=0.01/(1+t/2);
a=Flatten[Table[Table[{x[n,t],y[n,t]},{n,0, digits}],{t,1,10}],1];
ListPlot[a, PlotRange>All]
b=Table[a[[n]][[2]],{n,1,digits+1}];
ListPlot[b,PlotJoined>True, PlotRange>All]
Respectfully, Roger L. Bagula
tftn@earthlink.net, 11759Waterhill Road, Lakeside,Ca 920402905,tel: 6195610814 :
alternative email: rlbtftn@netscape.net
URL : http://home.earthlink.net/~tftn
 Next message: Roger Bagula: "tetrahedral Siegel Disk Julia map"
 Previous message: Roger Bagula: "Approximate entropy applied to the Pi digits"
 Messages sorted by: [ date ] [ thread ]
Relevant Pages
