Code of Universe vs Genetic Code 6: Commutative vs Noncommutative 2
 From: "OsherD" <mdoctorow@xxxxxxxxxxx>
 Date: 6 Jul 2005 06:20:43 0700
>>From Osher Doctorow mdoctorow@xxxxxxxxxxx
So how does the universe come to distinguish between parts of
noncommutative codes like L1L2L3 versus L3L2L1?
Arguably, a clue is in our reconciling the FrenetSerret formulas and
the spaces/curvature tensors/scalars of General Relativity. For the
latter, it proved decisive that locally spacetime is "flat" which
enabled solving many specific problems of importance. For the former,
recall the orthogonal vector "coordinate" triple at each point:
1) tangent, normal, binormal
In a way, GR's local "flatness" is similar to being guided by the
tangent vector to a curve/path in the sense of curvilinear motion,
while homogeneous/isotropic expansioncontraction is similar to being
guided by the normal vector and torsion generalization/modifications of
GR are similar to being guided by the binormal vector. Nonhomogeneous
nonisotropic expansioncontraction is arguably similar to being guided
by all three vectors: tangent, normal, binormal.
In three dimensional Cartesian coordinates, the normal, tangent
(plane), and binormal have interesting 1 and 2 and 3 dimensional
priorities. The tangent and binormal form a plane, the tangent and
normal form a plane, and so on. The gradient vector is
"inwardoutward" from a surface in a 3dimensional sense.
Osher Doctorow
.
 FollowUps:
 Prev by Date: Re: THE PHOTON, GRAVITY AND SOLAR SAIL
 Next by Date: Re: Code of Universe vs Genetic Code 6: Commutative vs Noncommutative 2
 Previous by thread: Re: Article: Did the big bang really happen?
 Next by thread: Re: Code of Universe vs Genetic Code 6: Commutative vs Noncommutative 2
 Index(es):
Relevant Pages
